Understand LLM fundamentals and capabilities
Integrate OpenAI and Claude APIs
Build autonomous agents with tools
Implement prompt engineering techniques
Apply AI to security analysis and threat detection
Handle costs and rate limiting
Large Language Models (LLMs) are neural networks trained on vast amounts of text data. They can understand context, generate text, reason about problems, and perform various tasks with minimal task-specific training.
Strengths
Natural language understanding, code generation, analysis, creative writing, reasoning
Limitations
Hallucinations, outdated knowledge, no real-time data access, context window limits
Best Practices
Verify outputs, use system prompts, implement guardrails, monitor costs
from openai import OpenAI\nimport os\n\nclient = OpenAI(api_key=os.getenv('OPENAI_API_KEY'))\n\nresponse = client.chat.completions.create(\n model='gpt-4',\n messages=[\n {'role': 'system', 'content': 'You are a security expert.'},\n {'role': 'user', 'content': 'Analyze this vulnerability: SQL injection'}\n ],\n temperature=0.7,\n max_tokens=1000\n)\n\nprint(response.choices[0].message.content)\n\ndef analyze_code_for_vulnerabilities(code):\n response = client.chat.completions.create(\n model='gpt-4',\n messages=[\n {'role': 'system', 'content': 'Identify vulnerabilities and suggest fixes.'},\n {'role': 'user', 'content': f'Analyze this code:\\n{code}'}\n ]\n )\n return response.choices[0].message.contentfrom openai import OpenAI\n\nclient = OpenAI()\n\nclass SimpleAgent:\n def __init__(self, name, system_prompt):\n self.name = name\n self.system_prompt = system_prompt\n self.conversation_history = []\n \n def think(self, user_input):\n self.conversation_history.append({\n 'role': 'user',\n 'content': user_input\n })\n response = client.chat.completions.create(\n model='gpt-4',\n system=self.system_prompt,\n messages=self.conversation_history\n )\n assistant_message = response.choices[0].message.content\n self.conversation_history.append({\n 'role': 'assistant',\n 'content': assistant_message\n })\n return assistant_message\n\nagent = SimpleAgent('SecurityAnalyzer', 'You are a security expert.')\nresponse = agent.think('What are common web vulnerabilities?')\nprint(response)Design an agent that fetches threat data, analyzes it using an LLM, and generates actionable security recommendations.
from openai import OpenAI\nimport requests\n\nclient = OpenAI()\n\nclass ThreatAnalyzerAgent:\n def __init__(self, api_key):\n self.api_key = api_key\n self.system_prompt = '''You are an expert threat analyst. Analyze security threats and provide:\n1. Threat classification (malware, phishing, APT, etc.)\n2. Risk assessment (CRITICAL, HIGH, MEDIUM, LOW)\n3. Recommended actions\n4. Detection methods'''\n \n def fetch_threat_data(self, indicator):\n try:\n response = requests.get(\n 'https://api.abuseipdb.com/api/v2/check',\n params={'ipAddress': indicator},\n headers={'Key': self.api_key}\n )\n return response.json()\n except Exception as e:\n return {'error': str(e)}\n \n def analyze_threat(self, threat_data):\n response = client.chat.completions.create(\n model='gpt-4',\n system=self.system_prompt,\n messages=[{\n 'role': 'user',\n 'content': f'Analyze this threat data:\\n{threat_data}'\n }]\n )\n return response.choices[0].message.content\n\nagent = ThreatAnalyzerAgent('your-abuseipdb-key')\nthreat_data = agent.fetch_threat_data('192.168.1.100')\nanalysis = agent.analyze_threat(threat_data)\nprint(analysis)